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Abstract. In three-dimensional space an embedded network is called gradient-constrained if the
absolute gradient of any differentiable point on the edges in the network is no more than a given
value m. A gradient-constrained minimum Steiner tree T is a minimum gradient-constrained network
interconnecting a given set of points. In this paper we investigate some of the fundamental properties
of these minimum networks. We first introduce a new metric, the gradient metric, which incorporates
a new definition of distance for edges with gradient greater than m. We then discuss the variational
argument in the gradient metric, and use it to prove that the degree of Steiner points in T is either
three or four. If the edges in T are labelled to indicate whether the gradients between their endpoints
are greater than, less than, or equal to m, then we show that, up to symmetry, there are only five
possible labellings for degree 3 Steiner points in T . Moreover, we prove that all four edges incident
with a degree 4 Steiner point in T must have gradient m if m is less than 0.38. Finally, we use the
variational argument to locate the Steiner points in T in terms of the positions of the neighbouring
vertices.
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1. Introduction

The Euclidean Steiner tree problem asks for a shortest network T interconnecting
a given point set N in Euclidean space. Such a network is necessarily a tree, and
may include additional nodes (not in N) to minimise the length of the tree. The tree
T is called a Euclidean minimum Steiner tree on N . The given points N are called
terminals while the additional points are called Steiner points (Hwang et al., 1992).
The degree of a Steiner point is assumed to be no less than 3, since otherwise there
would be no advantage in adding it.

One application of the Steiner tree problem in three-dimensional space is to
the underground mining industry. Given a number of ore deposits, whose locations
are known, the infrastructure costs of an underground mine can be minimised by
finding the shortest network of tunnels interconnecting these deposits to a given
access point. In practice, however, an important constraint due to haulage needs to
be imposed, namely that the slope of a tunnel cannot be very steep. The typical
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maximum gradient m for tunnels is about 1:7. Another possible application of
minimum Steiner trees is to the design of major road networks. Again, the gradient
of a road cannot be very large. In this paper we study the properties of any shortest
network T with such a gradient constraint, interconnecting a given set of points.
We refer to such a network as a gradient-constrained minimum Steiner tree. We
assume the maximum allowed gradient m is strictly greater than 0, otherwise T

cannot exist unless all terminals lie on a horizontal plane. In the latter case, the
problem becomes the classical Euclidean Steiner tree problem in a plane.

Let xp , yp , zp denote the Cartesian coordinates of a point p in three-dimensional
space. Assume that the z-axis is vertical. Then, by the gradient of an edge pq we
mean the absolute value of the slope from p to q, which is denoted by g(pq). That
is,

g(pq) = |zq − zp|√
(xq − xp)2 + (yq − yp)2

.

Suppose pq is an edge of T embedded in Euclidean space. If g(pq) � m, then pq
is a straight line joining p and q, and is referred to as a straight edge. However, if
g(pq) > m, then pq cannot be represented as a straight line without violating the
gradient constraint, but it can be represented by a zigzag line joining p and q with
each segment having gradient m. Such edges are referred to as bent edges.

The most widely studied Euclidean Steiner tree problem is the planar problem,
which has been shown to be NP-hard (Garey et al., 1977). The three-dimensional
Euclidean Steiner tree problem is known to be considerably more difficult than
the planar version. Some of the basic properties of such trees have been studied
in (Gilbert & Pollack, 1968) and (Smith, 1992). The gradient-constrained Steiner
tree problem, although likely to be more applicable, is even more complicated,
and to date has received very little study. The only previously published paper
directly addressing this problem is (Brazil et al., 1998), in which the terminals N
are assumed to all lie on a single vertical plane.

Despite the high levels of complexity involved in solving the Steiner problem,
it is nevertheless important to study the properties of exact minimum Steiner trees.
In the planar case this has lead to the exact algorithm of Warme et al. (2000), which
is remarkably efficient for large, randomly generated instances. In higher dimen-
sional cases, such properties have proved crucial in development of approxima-
tion algorithms. For example, Smith’s approximation algorithm for d-dimensional
Steiner trees (Smith, 1992) uses the fact that all angles at Steiner points in exact
minimum Steiner trees are 2π /3.

In this present series of papers we will conduct a rigorous study of the most
important properties of gradient-constrained minimum Steiner trees, beginning,
in this paper, with the fundamental properties of their Steiner points. The main
tool used here is the variational argument (Rubinstein and Thomas, 1991), which
has been proved to be very powerful in the study of the Euclidean Steiner tree
problem. In Section 2, we introduce a new metric, the gradient metric, and discuss
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the variational argument in the gradient metric. We prove that all Steiner points lie
in the convex hull of the terminals in the gradient metric. Section 3 is the main
part of this paper. We prove that the degree of Steiner points is either three or four.
If the gradient of an edge is less than, equal to, or greater than m, then the edge
is labelled by ‘f’ (meaning flat), ‘m’ (meaning maximum), or ‘b’ (meaning bent),
respectively. The set of labels around a Steiner point is referred to as the labelling
of that point. A labelling that can be achieved in a minimum Steiner tree is referred
to as a feasibly optimal labelling. We prove that, up to symmetry, there are only
five feasibly optimal labellings for the edges incident with a degree 3 Steiner point.
Moreover, we prove that all four edges incident with a degree 4 Steiner point must
have label ‘m’ if the maximum gradient m is less than 0.38. In Section 4, using the
variational argument, we discuss how to locate geometrically any Steiner point in
T (for small m), in terms of the positions of its adjacent nodes. The final section
is a brief discussion of the extent to which the results in this paper generalise to
higher dimensions.

2. The gradient metric and the variational argument

The lengths of edges in a gradient-constrained tree can be measured in a special
metric, called the gradient metric. Suppose o is the origin and p = (xp, yp, zp)

is a point in space. Define the vertical metric of the line op to be |op|v = czp
where c is a given constant. Then the gradient metric can be defined in terms of
the Euclidean and vertical metrics. Suppose m is the maximum gradient allowed in
gradient-constrained trees. The length of op in the gradient metric is defined to be

|op|g =
{

|op| =
√
x2
p + y2

p + z2
p, if g(op) � m;

|op|v = (
√

1 +m−2)|zp|, if g(op) � m.

It is easily checked that this defines a metric. Note that |op| � |op|g , and the
gradient metric is convex though it is not strictly convex.

Let T be a gradient-constrained minimum Steiner tree. We can now assume that
all edges of T are straight lines whose lengths are given by the gradient metric. Let
|T |g be the sum of the lengths of all edges in T . An edge pq in T is called an
f-edge, m-edge or b-edge if pq is labelled ‘f’ (g(pq) < m), ‘m’ (g(pq) = m) or
‘b’ g(pq) > m), respectively. The label of an edge can be thought of as indicating
which metric is ‘active’ for that edge, with an ‘m’ label indicating that both metrics
hold simultaneously.

The variational argument in the Steiner tree problem is as follows: for a min-
imum tree T , the directional derivative of |T |g is greater than or equal to zero when
its Steiner points are perturbed in any directions. Note that under an arbitrarily
small perturbation the only edges which can change labelling are m-edges. If no
m-edges change their labelling under a given perturbation, then it is easily checked
that the variation is reversible, and hence the directional derivative is strictly zero.
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Suppose e = sa is an edge in T , and s is a Steiner point which is perturbed to s′ in
direction u. Let ėu (or simply ė if u is known) denote the directional derivative of
the length of e. It is easy to show the following lemma and corollary:

LEMMA 1. (i) If e is an f-edge, then ėu = − cos( 	 ass′).
(ii) If e is a b-edge, then ėu = − cos( 	 zss′)

√
1 +m−2 where z is a point on the

vertical line through s such that 	 asz � π/2.
(iii) If e is an m-edge, then ėu is equal to either − cos( 	 ass′) or − cos( 	 ass′)√

1 +m2, depending on whether g(s′a) � m or g(s′a) > m.

COROLLARY 1. (i) When s moves horizontally, the length of e does not change
if e is a b-edge or if e is an m-edge and becomes a b-edge in the move.

(ii) When s moves vertically to the same side (or the opposite side) of the hori-
zontal plane through s as a, e becomes shorter (or, respectively, longer) regardless
of the gradient of e.

REMARK 1. From the lemma it is clear that, as in the Euclidean metric, the
directional derivative of e in the gradient metric is determined only by the direction
of u and is independent of the length of sa.

Because an f-edge is still an f-edge under a small perturbation, Lemma 1 gives
the following easy corollary:

LEMMA 2. Any f -edge of a Steiner point s meets other edges incident to s at an
angle no less than π /2.

We end this section with a theorem involving the convexity of the gradient
metric. Suppose T is a minimum Steiner tree on a point set N in space. If there is
no gradient constraint, i.e., if T is a Euclidean Steiner tree, then T has the following
properties (Hwang et al., 1992):

(S1) any Steiner point s lies in the plane P
 containing its three adjacent ver-
tices; and

(S2) consequently all Steiner points of T lie in the convex hull, hull(N), of N
The first statement (S1) does not generally carry over to gradient-constrained

minimum Steiner trees. (S1) is true if s has degree 3 and its incident edges are all
f-edges. Similarly, (S1) is true if the adjacent nodes to s all lie in a vertical plane
(Brazil et al. 1998). However, in general, s may not lie in the plane P
, as we will
see in the geometric characterisations of s in Section 4.

On the other hand, we can show that the second statement (S2) still holds in the
gradient-constrained metric. In the Euclidean metric, there are several equivalent
definitions of hull(N), one being the minimal set for which N is in hull(N) and, if
p and q are two points in hull(N), then all points on the line segment joining p and
q are in hull(N). Now we define the hull in the gradient-constrained metric in a
similar way: the hull of N in the gradient-constrained metric, denoted by hullg(N),
is the minimal set such that N is in hullg(N) and, if p and q are two points in
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hullg(N), then all points in all shortest paths joining p and q are in hullg(N). It is
easily checked that hullg(N) is the union of hull(N) and all shortest paths between
points in hull(N). Note that no straight line segment on the boundary of hullg(N)
has gradient greater than m.

THEOREM 1. IfN is the terminal set of the gradient-constrained minimum Steiner
tree T then all Steiner points of T lie in hullg(N).

Proof. Let p, q be points lying outside or on the boundary of hullg(N). Define
p′,q ′ to be the respective projections of p, q (i.e., the nearest points in the Euclidean
metric) onto the boundary of hullg(N).

We first show that |pq|g � |p′q ′|g , with strict inequality if one of p, q lies
on the boundary of hullg(N) and the other is outside hullg(N). We can assume,
without loss of generality that q lies outside hullg(N). By the definition of p′ and
q ′, we have 	 pp′q ′ � π/2 and 	 p′q ′q � π/2. So if g(p′q ′) � m then

|pq|g � |pq| � |p′q ′| = |p′q ′|g.
where the second inequality is strict if p lies on hullg(N). On the other hand, if
g(p′q ′) > m then we can assume, without loss of generality, that zp′ > zq ′ . Note
that any point p′′ near and below p′ such that g(p′p′′) � m, must lie in hullg(N).
Hence zp � zp′ , and similarly zq ′ > zq , which implies |pq|g > |p′q ′|g by the
definition of the gradient metric.

Now suppose, contrary to the theorem, there is a Steiner point s lying outside
hullg(N). Then there exists a subtree T1 of T containing s and at least one point
on the boundary of hullg(N), but no points from the interior of hullg(N). It fol-
lows from the above argument that projecting T1 onto the boundary of hullg(N)
decreases the length of T , giving the required contradiction. �

3. Feasibly optimal labellings at Steiner points

A Steiner point in a gradient-constrained tree is called optimal if its perturbation
cannot shorten the tree. Let s be a Steiner point in a gradient-constrained Steiner
tree T . Our aim in this section is to classify all possible sets of labellings of edges
incident with s, and to determine which of these edges can lie on the same side
of the horizontal plane through s. Throughout this section we will assume that
m � 1. Some further restrictions on m will also be required for some of the results
in Subsection 3.2.

First, by the triangle inequality, a basic property of optimal Steiner points is:

LEMMA 3. If a Steiner point s is optimal with respect to its adjacent points
a, b, c, . . . , then s is also optimal with respect to any points a′, b′, c′, . . . that lie
on sa, sb, sc, . . . , respectively.

By this lemma an edge incident with s is often assumed to have a particular
length, e.g. 1 or

√
1 +m2, without explanation in the proofs below.
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3.1. PROJECTIONS OF ANGLES, AND DEGREE 3 STEINER POINTS

An important application of the variational argument is that of splitting a small
angle in a non-optimal tree. If we perturb a Steiner point s of T in direction u,
denote the directional derivative of |T |g by Ṫu, or just Ṫ . Now suppose s is a Steiner
point joining a, b and c in a Euclidean Steiner tree T = sa ∪ sb ∪ sc. If 	 acb �
2π/3, then s collapses into c. On the other hand, if 	 acb < 2π/3 but s = c,
then T cannot be minimum by the following variational argument: Let s1 be a
point on the bisector u of 	 asb and close to s, then 	 ass1 = 	 bss1 < π/3 and
Ṫ = 1 − cos( 	 ass1) − cos( 	 bss1) < 0. In general, we refer to this process as
splitting the angle at s in the subtree sa ∪ sb along a vector u. Throughout this
section, we apply this technique to the gradient-constrained Steiner minimum tree
T .

We begin by considering Steiner points with incident b-edges. For any point p,
denote the horizontal plane through p by Hp. For simplicity, a point or an edge
will be said to be above (or below) p if it is above (or below) Hp. We also employ
the convention of saying that two edges incident with s lie on the same side of
Hs if they lie in the same closed half-space determined by Hs ; i.e., this includes
the possibility that one or both edges lie on Hs . The two edges are said to be
on different sides of Hs only if their interiors lie in different open half-spaces
(determined by Hs).

LEMMA 4. If sa is a b-edge in T, then no other edge incident with s lies on the
same side of Hs as a. Moreover, all other edges incident with s are m-edges.

Proof. Let sb be another edge of T incident with s. Let u be a vector with
gradient m, perturbing s to s′, such that s′ lies on the same side of Hs as a and the
angle θ = 	 s′sb is as small as possible. Applying the variational argument to T by
splitting the angle 	 asb at s along u, we note that Ṫ = ṡbu. If sb is a b-edge lying
on the same side of Hs as a then Ṫ < 0 by Lemma 1(ii). If, on the other hand, sb is
an m-edge or f-edge on the same side of Hs as a, or sb is an f-edge on the opposite
side of Hs to a, then θ < π/2 (since m � 1 in the latter case). So, again Ṫ < 0 by
Lemma 1. In each case we have a contradiction to the minimality of T .

Finally, if sb is a b-edge lying on the opposite side of Hs to a, then s has only
two incident edges by the above argument and s is not a Steiner point. �
THEOREM 2. Let s be a Steiner point of T , and let P be a horizontal or vertical
plane through s not containing any edges of T incident to s. Then, the edges of T
incident to s do not all lie on one side of P .

Proof. If P is horizontal, then the theorem follows by Corollary 1(ii). So, sup-
pose, contrary to the theorem, that all edges of s lie on one side of a vertical plane
P through s. Move s perpendicularly to P and into the half-space where the edges
of s lie. By such a move, any edge of s, say sa, becomes shorter by Lemma 1(i) if
it is an f-edge, or sa does not change its length and becomes a b-edge by Corollary
1(i) if it is an m-edge or a b-edge. Therefore, either T is shortened, or the perturbed
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Figure 1. Splitting an angle.

tree has the same length as T and has two b-edges lying on the same side of Hs

(since s has at least three incident edges). In the latter case T is again not minimal
by Lemma 4. Therefore not all edges of s lie on one side of P if T is minimal. �

Lemma 4 characterises Steiner points with an incident b-edge; so for the re-
mainder of this section we focus on cases where no b-edge exists. Suppose sa, sb
are two edges incident with s, and not labelled ‘b’. As a convention, if p is a point
in T , then we will denote its projection on Hs by p′. To find the properties of s, we
will study the projection 	 a′sb′ instead of 	 asb itself, in order to take advantage
of properties of angles on a plane. Note that sa, sb may both be m-edges, or both
be f-edges, or one may be an m-edge and the other an f-edge, and in each case
they either lie on the same side of Hs , or on two sides of Hs . Hence, there are
six different ways of classifying a and b with respect to s. For each classification
the lower bound of 	 a′sb′ is denoted by γ(mm1), γ(ff1), γ(mf1), γ(mm2), γ(ff2), or γ(mf2).
Below is a list of these lower bounds.

Labels Lying on Projection of angle

m,m 1 side of Hs � γ(mm1) = 2 arccos 1−m2

2 > 2π
3

f,f 1 side of Hs � γ(ff1) = 2π
3

m,f 1 side of Hs > γ(mf 1) = 2 arccos 1

1+
√

1+m2
> 2π

3

m,m 2 sides of Hs � γ(mm2) = 0

f,f 2 sides of Hs > γ(ff2) = arccos −1+m2

2 � π
2

m,f 2 sides of Hs > γ(mf2) = arccos −1+3m2+m4

4−m2−m4 � 0

The bound γ(mm2) is trivial. The other bounds will be proved separately in
several lemmas. Let 	 (v1, v2) denote the angle between two vectors v1, v2.

LEMMA 5. If sa, sb are m-edges lying on the same side of Hs then 	 a′sb′ �
γ(mm1) � 2π/3.

Proof. Let 2α be the angle between sa′ and sb′. Without loss of generality let
s = (0, 0, 0), a = (cos α, sin α,m), b = (cos α,− sin α,m). Suppose we split
sa ∪ sb by moving s to s1 in direction t = (1,0,m). Under such a move ss1 is an m-
edge and both sa and sb become f-edges (Fig. 1(1)). Since T is optimal we obtain,
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by the variational argument,

Ṫ = 1 − cos 	 ( �sa, t)− cos 	 ( �sb, t)

= 1 − 2
cos α +m2

1 +m2
� 0.

This inequality gives the required lower bound for 2α. �
LEMMA 6. Suppose sa is an m-edge in T with s = (0, 0, 0), a = (cos α, sin α,m),
0 � α < π/2. Suppose the projection of a vector t meets the x-axis at angle θ so
that a move of s in direction t preserves the gradient of sa. Then

t = (cos θ, sin θ,m cos(α − θ)).

Proof. By the assumption let s1 = r(cos θ, sin θ, h) be a point on t, where r

satisfies rh < m. Since

g(as1) = m− rh√
(r cos θ − cos α)2 + (r sin θ − sinα)2

= m,

we have

h =
(

1 −
√
(r cos θ − cos α)2 + (r sin θ − sinα)2

)
m/r

and

lim
r→0

h = m cos(α − θ).

The lemma is proved. �
REMARK 2. In the proofs that make use of this lemma, some results can be im-
proved by choosing a different parameter θ . However, to make the proofs simple,
we always choose θ = 0 and t = (1, 0,m cos α).

LEMMA 7. Suppose sa is an m-edge and sb is an f -edge in T .
(i) If both edges lie on the same side of Hs , then 	 a′sb′ > γ(mf1) � 2π/3.
(ii) If sa, sb lie on two sides of Hs , then 	 a′sb′ > γ(mf2) � 0.
Proof. As in Lemma 5, without loss of generality let s = (0, 0, 0) and a =

(cos α, sinα,m), where 2α = 	 a′sb′. So b = (cos α,− sinα, h), for some h.
In each case we split 	 asb in a direction close to the bisector, and show this
contradicts Ṫ � 0 for 2α below the given bound.

(i) First note that α � π/2 by the minimality of T . Split sa ∪ sb by moving s

in direction t = (1,0,m), which results in sa becoming an f-edge (Fig. 1(2)). For a
fixed α, Ṫ is maximised under this split when 	 ( �sb, t) is maximum, which clearly
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occurs when h = 0. So, we can assume that b = (cos α,− sin α, 0). Since T is
optimal,

Ṫ = 1 − cos 	 ( �sa, t)− cos 	 ( �sb, t)

= 1 − cos α +m2

1 +m2
− cos α√

1 +m2
� 0.

The bound γ(mf1) is easily derived from this inequality.
(ii) In this case, split 	 asb in the direction t = (1, 0,m cos α), preserving the

gradient of sa (by Lemma 6). Here 	 ( �sb, t) is maximised for a given α when h →
−m. So, setting b = (cos α,− sinα,−m), we obtain γ(mf2) by a similar argument
to that above. Note that the expression for γ(mf2) has been simplified by using the
identity cos 2x = 2 cos2 x − 1. �
LEMMA 8. Suppose sa, sb are two f -edges in T .

(i) If sa, sb lie on two sides of Hs , then 	 a′sb′ > γ(ff2) � π/2.
(ii) If both edges lie on the same side of Hs , then 	 a′sb′ � γ(ff1) = 2π/3.
Proof. Again, let 2α = 	 a′sb′; then we can assume, for some h1, h2 satisfying

0 � h1, h2 < m, that s = (0, 0, 0), a = (cos α sinα, h1) and b = (cos α,− sinα,
−h2) in Case (i) or b = (cos α,− sin α, h2) in Case (ii).

(i) Let a∗ = (cos α, sinα,m), b∗ = (cos α,− sin α,−m) and s1 = (1, 0, 0).
Then 	 a∗ss1 � 	 ass1, 	 b∗ss1 � 	 bss1. Hence, for a given α we need only con-
sider the extreme case where h1 = h2 = m. Thus, by splitting s in the direction
�ss1, we have Ṫ = 1 − 2 cos α/

√
1 +m2 � 0 and obtain the required γ(ff2).

(ii) First note, by a similar argument to that used in Case (i) (using the same
splitting direction), that α > π/4. Hence 	 asb � 	 a′sb′. Let t be the vector
bisecting 	 asb. If g(t) � m then 	 asb � 2π/3 by the same variational argument
used in the Euclidean case, and the result follows.

So assume, on the other hand, that g(t) > m. Let s1 = (1, 0,m). We will split
	 asb along �ss1 (Fig. 1(3)). Consider the plane P containing s1 and the y-axis. By
the assumption, either a or b lies above P . Hence, without loss of generality, we
can assume that a lies above P . It follows that a∗ = (cos α, sin α,m) satisfies
	 a∗ss1 � 	 ass1.

Now there are two possibilities for b. Either 	 bss1 � b∗ss1, where b∗ =
(cos α,− sinα,m), in which case 2α > 2π/3 by the proof of Lemma 5. Other-
wise 	 bss1 � b0ss1, where b0 = (cos α,− sin α, 0), in which case we again have
2α > 2π/3 by the proof of Lemma 7(i). This concludes the proof. �
LEMMA 9. If s is a Steiner point in T then there are at most two incident edges
lying strictly above (or below) Hs . Consequently the degree of any Steiner point is
either three or four.

Proof. If s has an incident b-edge, then the lemma is valid by Lemma 4. If, on
the other hand, there are more than two incident straight edges (each an f-edge or
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m-edge) on the same side of Hs , then among their projections two of them meet at
an angle of no more than 2π/3. This contradicts either Lemma 5, Lemma 7(i) or
Lemma 8(ii). �

Suppose s is a degree 3 Steiner point in T with two incident edges sa, sb lying
on one side of Hs , and the third sc lying on the other side of Hs . (This includes
the possibility that all three edges lie on Hs .) Let ga , gb, gc denote the respective
labels of these edges. Then we say the labelling of this degree 3 Steiner point is
(gagb/gc). By symmetry, we can assume a and b both lie on or above Hs .

THEOREM 3. If s is a degree 3 Steiner point in T , then up to symmetry there are
five feasibly optimal labellings: (ff/f), (ff/m), (fm/m), (mm/m) and (mm/b).

Proof. By Lemma 4 and Lemma 9, the only possible labellings of s, other than
those listed in the statement of the theorem, are (mm/f) and (mf/f). So, suppose,
contrary to the theorem, there is only one edge, the f-edge sc, lying below s, and
there is an m-edge, say sa, lying above s. Because g(sa) > g(sc), sa shrinks
strictly faster than sc stretches when s moves vertically upwards. Since the third
edge, sb, lies on the same side of Hs as as, and ṡb � 0 under this move, we have
Ṫ < 0, contradicting the minimality of T . �

3.2. LABELLINGS FOR DEGREE 4 STEINER POINTS.

We now use the angle projections obtained in the previous lemmas to study degree
4 Steiner points. Suppose s is a degree 4 Steiner point in T with two edges sa, sb
lying on one side of Hs , and the other two edges sc, sd lying on the other side of
Hs . Let ga, gb, gc, gd be the respective labels of these edges. Then the labelling of
s is denoted (gagb/gcgd). Again we assume a and b both lie on or above Hs .

By Lemma 4 and Lemma 9, none of the edges incident with s is a b-edge.
Therefore, up to symmetry the possible labellings of s are (ff/ff), (mf/ff), (mm/ff),
(mf/mf), (mm/mf) and (mm/mm). Two of these labellings can immediately be
shown not to be feasibly optimal.

LEMMA 10. If s is a degree 4 Steiner point in T , then the labelling of s is not
(mm/ff) or (ff/ff).

Proof. First assume s has labelling (mm/ff). As in the proof of the previous
theorem, if s moves vertically upwards then the m-edges decrease in length strictly
faster than the f-edges increase in length. Hence Ṫ < 0, contradicting the minim-
ality of T.

If, on the other hand, s has labelling (ff/ff), project the four edges incident with
s onto the plane Hs . By Lemma 8, the angle between each adjacent pair of these
projected edges is strictly greater than π /2; hence the sum of the angles around s is
more than 2π , again giving a contradiction. �
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Figure 2. Splitting an (mf/mf) Steiner point. This is a plan view. The arrowheads on edges
indicate direction of slope, and point downwards. The angles indicated are those between
projected edges.

In the remainder of this section, we show that no degree 4 Steiner point is op-
timal for small m unless its labelling is (mm/mm). Let

∑
proj (

	 ) denote the sum of
the four angles, made by sa′, sb′, sc′, sd ′, the projections of the four edges at s. As
in the proof of the previous lemma, our strategy is to show that

∑
proj (

	 ) > 2π for
all other labellings. Up to symmetry there are two patterns of the projections sa′,
sb′, sc′, sd ′, distinguishing between whether adjacent edges have been projected
from the same or opposite sides of Hs . There are two patterns of the cyclic order
of a′, b′, c′, d ′ around s. Let Pattern A be (a′b′c′d ′) and Pattern B be (a′c′b′d ′).

LEMMA 11. The labelling (mf/ff) is not feasibly optimal if m < 0.82.
Proof. Without loss of generality assume sa is an m-edge. In Pattern A∑
proj

( 	 ) = 	 a′sb′ + 	 b′sc′ + 	 c′sd ′ + 	 d ′sa′

� γ(mf1) + γ(ff2) + 2π

3
+ γ(mf1)

> 2π if m < 0.99325.

In Pattern B,∑
proj

( 	 ) = 	 a′sc′ + 	 c′sb′ + 	 b′sd ′ + 	 d ′sa′

� 2(γ(mf2) + γ(ff2))

> 2π if m < 0.82016.

�
In the following two lemmas, instead of splitting the angle at s we split the point

s itself into two Steiner points s1, s2 so that g(s1s2) = m.

LEMMA 12. The labelling (mf/mf) is not feasibly optimal if m < 0.514.
Proof. Without loss of generality assume sa and sc are m-edges. Consider the

projections of the four edges on Hs . In the cyclic sequence of edges around s, sa′
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and sc′ may or may not be adjacent. In the latter case∑
proj

( 	 ) = 2(γ(mf1) + γ(mf2)) > 2π,

if m < 0.94622.
So, we can now assume sa′ and sc′ are adjacent in the cyclic sequence of edges

around s. Let p and q be the other two adjacent vertices to s, such that the cyclic
sequence of projected vertices in Hs around s is (a′c′p′q ′). Note that pa and qa are
both f-edges, one above and one below Hs . To prove the theorem, it is convenient
to consider two subcases:

Case (i): Let 	 a′sc′ = 2α < π/2. Without loss of generality, we can assume
s = (0, 0, 0), a = (cos α, sinα,m) and c = (cos α,− sin α,−m). We split s into
two Steiner points s1 and s2, both equidistant from s, along vectors u1 = (1,1,m) and
u2 = (1,−1,−m). The edges in the new subtree after splitting s are s1a, s1s2, s2c, s1q

and s2p (Fig. 2). Note that g(s1s2) = m and g(s1a) = g(s2c) � m. The projection
of the path as1s2c onto Hs is shorter than the path a′sc′ so it follows that the
path as1s2c has the same length as asc originally (unless α = 0, in which case the
instantaneous change in length of the path is 0). Hence Ṫ equals the change in
lengths of the two edges sp and sq, that is,

Ṫ = − cos 	 (qss1)− cos 	 (pss2) � 0,

since T is minimum. Let θ1 = 	 (qss1) and let θ2 = 	 (pss2).
We wish to maximise Ṫ , for a fixed projected angle 	 p′sq ′. This means max-

imising θ1 and θ2, which obviously means forcing sp and sq to their extremal
positions at slope m, with p above Hs and q below. Furthermore, since 	 p′sq ′ >
π/2, and since cos is a convex function over the range of θ1 and θ2, it follows that
the maximum of Ṫ is achieved when θ1 = θ2 � π/2. Now, consider the angle
	 q ′ss′

1 in this extremal configuration. Since g(qs) = m, g(s1s) = m/
√

2 and
θ1 � π/2, it is easy to compute that the projected angle 	 q ′ss′

1 � arccos(m2/
√

2).
Similarly, 	 p′ss′

2 � arccos(m2/
√

2).
Finally, since 	 s′

1ss
′
2 = π/2 and 	 p′sq ′ � arccos((−1 + m2)/2) (by Lemma

8(i)), we have (for T minimum),

2π = 	 p′sq ′ + 	 q ′ss′
1 + 	 p′ss′

2 + 	 s′
1ss

′
2

� arccos((−1 +m2)/2)+ 2 arccos(m2/
√

2)+ π/2,

a contradiction when m < 0.51444.
Case (ii): Let 	 a′sc′ = 2α > π/2. The argument is the same as in the previous

case, but now we let s1 and s2 move along the lines sa and sc. The decrease in
length is even more than in Case (i). �
REMARK 3. The variation in the above proof is far from obvious. It was found
with the help of a computer program developed to construct gradient-constrained
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Figure 3. Splitting an (mm/mf) Steiner point. This is a plan view. The arrowheads on edges
indicate direction of slope, and point downwards. The angles indicated are those between
projected edges.

Steiner minimum trees. The program uses a damped Newton method which employs
some of the theory developed in this paper. When using the program to attempt to
construct stable Steiner points of degree 4 with labelling (mf/mf), we noticed that
promising candidates for small values of m tended to split in a manner similar to
that outlined above. It should also be noted that for larger values of m (such asm ≈
0.95) the computer program found degree 4 points labelled (mf/mf) that appear
to be stable. This suggests that, although the upper bound given in the lemma
can almost certainly be improved, the labelling (mf/mf) nevertheless appears to be
feasibly optimal for some larger values of m � 1.

LEMMA 13. The labelling (mm/mf) is not feasibly optimal if m < 0.38.

Proof. In Pattern A,∑
proj

( 	 ) = γ(mm1) + γ(mf2) + γ(mf1) > 2π

if m < 0.92007.
In Pattern B, without loss of generality, suppose a = (cos α, sin α,m), b =

(cos α,− sinα,m) and c = (cos β, sin β,−m), 0 � β � α. Since 	 a′sd ′ >

γ(mf2), 	 b′sd ′ > γ(mf2) and 	 a′sd ′ + 	 b′/sd ′ + 2α = 2π , we have

α < π − γ(mf2) = π − arccos
−2 + 3m2 + m4

4 −m2 −m4
= φ. (1)

We can now assume that α < π/2, since it follows from the above inequality for
all m < 0.74736.

As in the previous lemma we split s into two Steiner points s1, s2, this time
so that the new edges interconnecting s with a, b, c are s1a, s1b, s1s2 s2c and s2s

(Fig 3). (The edge ds remains unchanged, but s is no longer a Steiner point after
the split). We perform the split of s to s1 and s2 along vectors (1,0,m cos α) and
(1,0,−m cos β) respectively. By Lemma 6 this guarantees that g(s1a) = g(s1b) =
g(s2c) = m. Furthermore, let the ratio of lengths of s1s and s2s be given by

ρ = |s1s|
|s2s| = (1 + cos β)

1 − cos α)
.
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Then an easy computation shows that g(s1s2) = m.
Since the paths bsc and bs1s2c have the same length, we obtain, for the above

variation,

Ṫ = 1 − ρ cos 	 (ass1)

= 1 − (1 + cos β)(1 +m2) cos α

(1 − cos α)
√

1 +m2
√

1 + m2 cos2 α
= f (m, β, α).

We require that f (m, β, α) � 0, by the minimality of T . It is easy to see that
f (m, β, α) � f (m, α, α) � (m, φ, φ) by Inequality (2). An analysis of f (m, φ, φ)
as a function of m shows that f (m, φ, φ) < 0 for all m � 0.38091, concluding the
proof. �

Together, the previous four Lemmas prove the following theorem.

THEOREM 4. If s is a degree 4 Steiner point in a gradient-constrained minimum
Steiner tree T and if m < 0.38, then the labelling of s is (mm/mm).

4. Geometric locations of Steiner points

By Theorems 3 and 4, there are six possible labellings at a Steiner point when
m < 0.38. In this section we show how to use the variational argument to locate
the Steiner point s in the gradient-constrained minimum Steiner tree T for these
labellings, in terms of the adjacent vertices of T . Suppose the edges incident with s
are sa, sb, sc (or sa, sb, sc, sd if s is of degree 4), where s has labelling (gagb/gc)

(or (gagb/gcgd) if s is of degree 4). For any point p, let Cp, denote the cone gener-
ated by rotating a line through p with gradient m about the vertical line through p.
So, Cp is a right vertical cone whose vertex is p.

We now consider each of the labellings in turn. If the labelling at s is (ff/f), then
it is clear that the location of s is the same as in the unconstrained three dimensional
Steiner problem. If the labelling is (mm/m), then s is determined by equations
g(sa) = g(sb) = g(sc) = m. (If the equations have no solution, then there is
no tree with labelling (mm/m).) Furthermore, we require that 	 a′sb′ � γ(mm1), by
Lemma 5. Using these observations, it is easy to prove the following theorem.

THEOREM 5. (i) If s has labelling (ff/f), then s is the point on the plane through
a, b, c such that 	 asb = 	 bsc = 	 csa = 2π/3.

(ii) If s has labelling (mm/m), then s is a point at which the three cones Ca , Cb

and Cc all intersect, and 	 asb � arccos(−1 + m2)/2 � π/2.

For the remaining labellings, we employ the variational argument. Since any
vector in space can be decomposed into a sum of three non-coplanar components,
to prove s can be a Steiner point of a minimum tree T , by the variational argument,
we need only to show Ṫ � 0 for perturbations of s in three non-coplanar directions.
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THEOREM 6. If s has labelling (mm/b), then s is a point at the intersection of Ca ,
Cb and the vertical plane through b, c.

Proof. By Lemma 1 it is easy to see that Ṫ � 0 when s moves either up or
down, or in any horizontal direction. This proves the theorem. �
THEOREM 7. Suppose s has labelling (ff/m), and let v be a horizontal vector
tangent to Cc at s. Then s is a point on Cc such that 	 (v, �sa) = 	 (−v, �sb) and
cos 	 ( �cs, �sa) + cos 	 ( �cs, �sb) = 1.

Proof. Let P be the tangent plane of Ca at s. Because s has to lie on Ca, we
require that Ṫ = 0 in two linearly independent directions on P . Choosing �cs as
one direction and v as the other, the statement of the theorem easily follows. �

The final two theorems require the following lemma.

LEMMA 14. Let p and q be points in three dimensional space such that g(pq) >
m. Then Cp ∩ Cq is an ellipse.

Proof. Suppose Cp is cut into two sections by a plane P (not containing p)
whose slope is less than m. As is well known, the intersection Cp ∩P is an ellipse.
The proof follows from the symmetry of an ellipse. Make a copy of the section of
Cp, containing p, rotate it through an angle π about a horizontal line, and translate
the rotated copy so that the two ellipses coincide. If the vertex of the rotated copy is
at p∗, then this proves that Cp ∩Cp∗ is an ellipse. By varying the slope and position
of P , p∗ can be any point satisfying g(pp∗) > m. �
THEOREM 8. If s has labelling (fm/m), then s is a point lying on Cb ∩ Cc, which
is an ellipse, such that sa is perpendicular to this ellipse.

Proof. Since sb and sc have gradient m and lie on two sides of Hs , we have
g(bc) � m. First suppose g(bc) = m, i.e., b, s and c are collinear. Because
	 a′sb′ > γ(mf1) > 2π/3, it follows that 	 asb > π/2. Therefore 	 asc < π/2,
which contradicts Lemma 2.

Hence g(bc) > m, and Cb ∩ Cc is an ellipse (by Lemma 14). Now let t be a
vector tangent to the ellipse Cb∩Cc at s. Note that |sb|+|sc| is constant as s moves
around the ellipse Cb∩Cc. Since T is minimum, and since perturbing s in direction
t leaves the labelling at s unchanged, it follows that Ṫt = − cos 	 ( �sa, t) = 0. Hence
sa is perpendicular to the ellipse. �

Finally, we consider the case where s has degree 4. If, in this case, we can
partition the edges incident with s into two pairs, such that each pair lies in a
vertical plane through s and has the property that the projections of the two edges
onto Hs meet at an angle of π at s, then we say that the edges of s are bi-vertically
coplanar. Note that if two m-edges incident with s lie on opposite sides of Hs and
lie in the same vertical plane then those edges are collinear.
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Figure 4. Projections of four intersecting cones.

THEOREM 9. If s has labelling (mm/mm), then s is a point at the intersection
of the four cones Ca,Cb,Cc,Cd , and furthermore the edges incident with s are
bi-vertically coplanar.

Proof. The first property is immediate; it remains to show that the edges incident
with s are bi-vertically coplanar. First, assume no two edges incident with s are
collinear. This implies that g(ac) > m and g(bd) > m. Let Eac,Ebd represent the
ellipses Ca ∩ Cc and Cb ∩ Cd , respectively. By the labelling of s,Eac ∩ Ebd is not
empty. However, if Eac intersects the region bounded by Cb∪Cd at any point not on
Ebd , then there exists a degree 4 Steiner point with an incident b-edge, contradicting
Theorem 3.14. Hence, Eac and Ebd are tangent. It follows that the projections of
Eac,Ebd on Hs , which are also ellipses, have a common horizontal tangent vector
t1. Figure 4 depicts these projections and the tangent, where a′, b′, c′, d ′ are the
projections of a, b, c, d, respectively. It is not hard to see that a′, c′ are the foci of
the projection of Eac, and b′, d ′ are the foci of the projection of Ebd Hence,

	 ( �a′s, t1) = 	 ( �c′s,−t1), 	 ( �b′s, t1) = 	 ( �d ′s,−t1).

Similarly, the projections of other two ellipses Ca ∩ Cd and Cb ∩ Cc also have a
common tangent vector t2. Consequently

	 ( �a′s, t2) = 	 ( �d ′s,−t2), 	 ( �b′s, t2) = 	 ( �c′s,−t2).

Combining the above four equations we conclude that a′, s′, b′ are collinear and
c′, s, d ′ are collinear. This means that a, s and b lie in a vertical plane, and c, s and
d also lie in a vertical plane. Therefore the configuration is bi-vertically coplanar.

Next suppose that two of the edges, say sa and sd, are collinear. If sb, sc are
not collinear, then the ellipses Eac,Ebd exist, and a contradiction to the minimality
of T can be obtained by a similar argument to that above. Hence, sb, sc are also
collinear, and again the configuration is bi-vertically coplanar. �
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5. Generalisations to higher dimensions

Although three-dimensional space is a natural context for these networks, in terms
of their most obvious applications, it is worth noting that some of the results in this
paper generalise to higher dimensions.

Let p = (x1, x2, . . . , xd−1, z) be a point in d-dimensional space, and let the
maximum gradient m be given. If we think of the z-axis as being a vertical axis,
then we can define the length of the edge op in the gradient metric as follows:

|op|g =
{

|op| =
√
x2

1 + x2
2 + · · · + x2

d−1 + z2, if g(op) � m;
|op|v = (

√
1 +m−2)|z| if g(op) � m.

If in Sections 2 and 3 we replace the word ‘plane’ by ‘hyperplane’, and define a
horizontal hyperplane to be a hyperplane orthogonal to the z-axis, then all results
in Section 2 still hold in d-dimensional space, and Lemmas 3 to 8 also hold. In
particular, the lower bounds in the table in Section 3.1 also apply in d-dimensional
space. However, because these are bounds on a hyperplane rather than a plane, they
are much less useful, and the arguments in Lemma 9, Theorem 3 and Section 3.2
no longer apply. Indeed, even the question of determining the maximum degree
of Steiner points in a d-dimensional gradient-constrained minimum Steiner tree is
currently open.

Another interesting open question is to determine the nature of Steiner points in
a gradient-constrained minimum Steiner tree (in three dimensions) if m > 1. For
example, it seems likely that Theorem 3 is still true in this case, but the methods
employed in this paper do not appear to be enough to easily prove such a result.
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